Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.049
Filtrar
1.
Biochem Biophys Res Commun ; 586: 150-156, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844121

RESUMO

Bi-oriented attachment of microtubules to the centromere is a pre-requisite for faithful chromosome segregation during mitosis. Budding yeast have point centromeres containing the cis-element proteins CDE-I, -II, and -III, which interact with trans-acting factors such as Cbf1, Cse4, and Ndc10. Our previous genetic screens, using a comprehensive library of histone point mutants, revealed that the TBS-I, -II, and -III regions of nucleosomes are required for faithful chromosome segregation. In TBS-III deficient cells, peri-centromeric nucleosomes containing the H2A.Z homolog Htz1 are lacking, however, it is unclear why chromosome segregation is defective in these cells. Here, we show that, in cells lacking TBS-III, both chromatin binding at the centromere and the total amount of some of the centromere proteins are reduced, and transcription through the centromere is up-regulated during M-phase. Moreover, the chromatin binding of Cse4, Mif2, Cbf1, Ndc10, and Scm3 was reduced upon ectopic transcription through the centromere in wild-type cells. These results suggest that transcription through the centromere displaces key centromere proteins and, consequently, destabilizes the interaction between centromeres and microtubules, leading to defective chromosome segregation. The identification of new roles for histone binding residues in TBS-III will shed new light on nucleosome function during chromosome segregation.


Assuntos
Proteína Centromérica A/genética , Centrômero/metabolismo , Histonas/genética , Microtúbulos/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Centrômero/ultraestrutura , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/ultraestrutura , Mitose , Modelos Moleculares , Nucleossomos/ultraestrutura , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 81(23): 4876-4890.e7, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34739871

RESUMO

Histone H3.3 lysine-to-methionine substitutions K27M and K36M impair the deposition of opposing chromatin marks, H3K27me3/me2 and H3K36me3/me2. We show that these mutations induce hypotrophic and disorganized eyes in Drosophila eye primordia. Restriction of H3K27me3 spread in H3.3K27M and its redistribution in H3.3K36M result in transcriptional deregulation of PRC2-targeted eye development and of piRNA biogenesis genes, including krimp. Notably, both mutants promote redistribution of H3K36me2 away from repetitive regions into active genes, which associate with retrotransposon de-repression in eye discs. Aberrant expression of krimp represses LINE retrotransposons but does not contribute to the eye phenotype. Depletion of H3K36me2 methyltransferase ash1 in H3.3K27M, and of PRC2 component E(z) in H3.3K36M, restores the expression of eye developmental genes and normal eye growth, showing that redistribution of antagonistic marks contributes to K-to-M pathogenesis. Our results implicate a novel function for H3K36me2 and showcase convergent downstream effects of oncohistones that target opposing epigenetic marks.


Assuntos
Cromatina/química , Elementos de DNA Transponíveis , Histonas/química , Histonas/genética , Discos Imaginais/metabolismo , Mutação , Animais , Animais Geneticamente Modificados , Centrômero/ultraestrutura , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Metilação de DNA , Drosophila melanogaster , Epigênese Genética , Humanos , Lisina/química , Metionina/química , Camundongos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Fenótipo , RNA-Seq
4.
Science ; 372(6545): 984-989, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34045355

RESUMO

We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Evolução Biológica , Cromossomos/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Eucariotos/genética , Genoma , Complexos Multiproteicos/genética , Complexos Multiproteicos/fisiologia , Adenosina Trifosfatases/química , Algoritmos , Animais , Nucléolo Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Centrômero/ultraestrutura , Cromossomos/química , Cromossomos Humanos/química , Cromossomos Humanos/ultraestrutura , Proteínas de Ligação a DNA/química , Genoma Humano , Genômica , Heterocromatina/ultraestrutura , Humanos , Interfase , Mitose , Modelos Biológicos , Complexos Multiproteicos/química , Telômero/ultraestrutura
5.
Nat Commun ; 12(1): 1763, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741944

RESUMO

Accurate chromosome segregation relies on the specific centromeric nucleosome-kinetochore interface. In budding yeast, the centromere CBF3 complex guides the deposition of CENP-A, an H3 variant, to form the centromeric nucleosome in a DNA sequence-dependent manner. Here, we determine the structures of the centromeric nucleosome containing the native CEN3 DNA and the CBF3core bound to the canonical nucleosome containing an engineered CEN3 DNA. The centromeric nucleosome core structure contains 115 base pair DNA including a CCG motif. The CBF3core specifically recognizes the nucleosomal CCG motif through the Gal4 domain while allosterically altering the DNA conformation. Cryo-EM, modeling, and mutational studies reveal that the CBF3core forms dynamic interactions with core histones H2B and CENP-A in the CEN3 nucleosome. Our results provide insights into the structure of the budding yeast centromeric nucleosome and the mechanism of its assembly, which have implications for analogous processes of human centromeric nucleosome formation.


Assuntos
Centrômero/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cinetocoros/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Centrômero/genética , Centrômero/ultraestrutura , Proteína Centromérica A/química , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Microscopia Crioeletrônica , DNA Fúngico/química , DNA Fúngico/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Cinetocoros/química , Conformação de Ácido Nucleico , Nucleossomos/genética , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
6.
Exp Cell Res ; 401(2): 112523, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33675804

RESUMO

The lampbrush chromosomes (LBCs) in oocytes of the Mexican axolotl (Ambystoma mexicanum) were identified some time ago by their relative lengths and predicted centromeres, but they have never been associated completely with the mitotic karyotype, linkage maps or genome assembly. We identified 9 of the axolotl LBCs using RNAseq to identify actively transcribed genes and 13 BAC (bacterial artificial clone) probes containing pieces of active genes. Using read coverage analysis to find candidate centromere sequences, we developed a centromere probe that localizes to all 14 centromeres. Measurements of relative LBC arm lengths and polymerase III localization patterns enabled us to identify all LBCs. This study presents a relatively simple and reliable way to identify each axolotl LBC cytologically and to anchor chromosome-length sequences (from the axolotl genome assembly) to the physical LBCs by immunostaining and fluorescence in situ hybridization. Our data will facilitate a more detailed transcription analysis of individual LBC loops.


Assuntos
Ambystoma mexicanum/genética , Centrômero/ultraestrutura , Cromossomos/genética , Hibridização in Situ Fluorescente , Transcrição Gênica , Ambystoma mexicanum/imunologia , Animais , Centrômero/genética , Mapeamento Cromossômico , Cromossomos/imunologia , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais Bacterianos/imunologia , Oócitos/crescimento & desenvolvimento , Oócitos/ultraestrutura
7.
Cytogenet Genome Res ; 161(1-2): 93-102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33601374

RESUMO

Constitutive heterochromatin is the most mysterious part of the eukaryotic genome. It forms vital chromosome regions such as the centromeric and the pericentromeric ones. The main component of heterochromatic regions are tandem repeats (TR), and their specific organization complicates assembly, annotation, and mapping of these regions. Unannotated and unmapped TR arrays are still present in database contigs. In this study, we used a set of TR in the genomes of the pig (Sus scrofa) and the Chinese hamster (Cricetulus griseus) identified with the help of bioinformatics techniques and determined the specificity of the designed probes. The signal of the 4 pig TR probes in spermatogenic cells was often ring-shaped, especially in primary spermatocytes. The rings were located in the regions relatively weakly stained with DAPI. The unique assembly of the centromeric region was traced using the hamster meiotic chromosomes. The probe specific to chromosome 5 was used. Two signals, arranged as rings, were seen at the pachytene stage, similar to those in the pig spermatogenic cells. In the spermatogenic cells of both pig and hamster, the rings appeared on the chromosomes with pericentromeric TR probes. Our observations support the loop model of the centromeric region, the size of the loops being about 50 kb.


Assuntos
Centrômero/ultraestrutura , Heterocromatina/genética , Animais , Biologia Computacional , Mapeamento de Sequências Contíguas , Cricetulus , DNA Satélite , Genoma , Hibridização in Situ Fluorescente , Masculino , Meiose , Hibridização de Ácido Nucleico , Espermatogênese , Sus scrofa
8.
EMBO J ; 40(5): e105671, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33463726

RESUMO

The CENP-A nucleosome is a key structure for kinetochore assembly. Once the CENP-A nucleosome is established in the centromere, additional proteins recognize the CENP-A nucleosome to form a kinetochore. CENP-C and CENP-N are CENP-A binding proteins. We previously demonstrated that vertebrate CENP-C binding to the CENP-A nucleosome is regulated by CDK1-mediated CENP-C phosphorylation. However, it is still unknown how the phosphorylation of CENP-C regulates its binding to CENP-A. It is also not completely understood how and whether CENP-C and CENP-N act together on the CENP-A nucleosome. Here, using cryo-electron microscopy (cryo-EM) in combination with biochemical approaches, we reveal a stable CENP-A nucleosome-binding mode of CENP-C through unique regions. The chicken CENP-C structure bound to the CENP-A nucleosome is stabilized by an intramolecular link through the phosphorylated CENP-C residue. The stable CENP-A-CENP-C complex excludes CENP-N from the CENP-A nucleosome. These findings provide mechanistic insights into the dynamic kinetochore assembly regulated by CDK1-mediated CENP-C phosphorylation.


Assuntos
Proteína Centromérica A/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Microscopia Crioeletrônica/métodos , Cinetocoros/metabolismo , Nucleossomos/metabolismo , Animais , Centrômero/ultraestrutura , Proteína Centromérica A/ultraestrutura , Galinhas , Proteínas Cromossômicas não Histona/ultraestrutura , Cinetocoros/ultraestrutura , Modelos Moleculares , Nucleossomos/ultraestrutura , Fosforilação , Conformação Proteica
9.
J Mol Biol ; 433(6): 166676, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33065112

RESUMO

The centromere is an essential chromatin domain required for kinetochore recruitment and chromosome segregation in eukaryotes. To perform this role, centro-chromatin adopts a unique structure that provides access to kinetochore proteins and maintains stability under tension during mitosis. This is achieved by the presence of nucleosomes containing the H3 variant CENP-A, which also acts as the epigenetic mark defining the centromere. In this review, we discuss the role of CENP-A on the structure and dynamics of centromeric chromatin. We further discuss the impact of the CENP-A binding proteins CENP-C, CENP-N, and CENP-B on modulating centro-chromatin structure. Based on these findings we provide an overview of the higher order structure of the centromere.


Assuntos
Proteína Centromérica A/química , Proteína B de Centrômero/química , Centrômero/ultraestrutura , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/química , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Cromatina/química , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Humanos , Mitose , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Cytogenet Genome Res ; 160(9): 554-564, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33171461

RESUMO

Mobile elements are major regulators of genome evolution through their effects on genome size and chromosome structure in higher organisms. Non-long terminal repeat (non-LTR) retrotransposons, one of the subclasses of transposons, are specifically inserted into repetitive DNA sequences. While studies on the insertion of non-LTR retrotransposons into ribosomal RNA genes and other repetitive DNA sequences have been reported in the animal kingdom, studies in the plant kingdom are limited. Here, using FISH, we confirmed that Menolird18, a member of LINE (long interspersed nuclear element) in non-LTR retrotransposons and found in Cucumis melo, was inserted into ITS and ETS (internal and external transcribed spacers) regions of 18S rDNA in melon and cucumber. Beside the 18S rDNA regions, Menolird18 was also detected in all centromeric regions of melon, while it was located at pericentromeric and sub-telomeric regions in cucumber. The fact that FISH signals of Menolird18 were found in centromeric and rDNA regions of mitotic chromosomes suggests that Menolird18 is a rDNA and centromere-specific non-LTR retrotransposon in melon. Our findings are the first report on a non-LTR retrotransposon that is highly conserved in 2 different plant species, melon and cucumber. The clear distinction of chromosomal localization of Menolird18 in melon and cucumber implies that it might have been involved in the evolutionary processes of the melon (C. melo) and cucumber (C. sativus) genomes.


Assuntos
Cucumis melo/genética , Cucumis sativus/genética , Retroelementos , Centrômero/genética , Centrômero/ultraestrutura , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Evolução Molecular , RNA de Plantas/genética , RNA Ribossômico 18S/genética , Sequências Repetitivas de Ácido Nucleico , Especificidade da Espécie
11.
PLoS Genet ; 16(7): e1008918, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730246

RESUMO

Holocentric chromosomes possess multiple kinetochores along their length rather than the single centromere typical of other chromosomes [1]. They have been described for the first time in cytogenetic experiments dating from 1935 and, since this first observation, the term holocentric chromosome has referred to chromosomes that: i. lack the primary constriction corresponding to centromere observed in monocentric chromosomes [2]; ii. possess multiple kinetochores dispersed along the chromosomal axis so that microtubules bind to chromosomes along their entire length and move broadside to the pole from the metaphase plate [3]. These chromosomes are also termed holokinetic, because, during cell division, chromatids move apart in parallel and do not form the classical V-shaped figures typical of monocentric chromosomes [4-6]. Holocentric chromosomes evolved several times during both animal and plant evolution and are currently reported in about eight hundred diverse species, including plants, insects, arachnids and nematodes [7,8]. As a consequence of their diffuse kinetochores, holocentric chromosomes may stabilize chromosomal fragments favouring karyotype rearrangements [9,10]. However, holocentric chromosome may also present limitations to crossing over causing a restriction of the number of chiasma in bivalents [11] and may cause a restructuring of meiotic divisions resulting in an inverted meiosis [12].


Assuntos
Caenorhabditis elegans/genética , Cromossomos/genética , Cinetocoros/ultraestrutura , Meiose/genética , Animais , Caenorhabditis elegans/citologia , Centrômero/genética , Centrômero/ultraestrutura , Cromátides/genética , Cromátides/ultraestrutura , Segregação de Cromossomos/genética , Cromossomos/ultraestrutura , Cariótipo , Plantas/genética
12.
J Cell Biol ; 219(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32356865

RESUMO

The Aurora B chromosomal passenger complex (CPC) is a conserved regulator of mitosis. Its functions require localization first to the chromosome arms and then centromeres in mitosis and subsequently the central spindle in anaphase. Here, we analyze the requirements for core CPC subunits, survivin and INCENP, and the mitotic kinesin-like protein 2 (MKLP2) in targeting to these distinct localizations. Centromere recruitment of the CPC requires interaction of survivin with histone H3 phosphorylated at threonine 3, and we provide a complete structure of this assembly. Furthermore, we show that the INCENP RRKKRR-motif is required for both centromeric localization of the CPC in metaphase and MKLP2-dependent transport in anaphase. MKLP2 and DNA bind competitively to this motif, and INCENP T59 phosphorylation acts as a switch preventing MKLP2 binding in metaphase. In anaphase, CPC binding promotes the microtubule-dependent ATPase activity of MKLP2. These results explain how centromere targeting of the CPC in mitosis is coupled to its movement to the central spindle in anaphase.


Assuntos
Anáfase , Aurora Quinase B/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Cinesinas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Aurora Quinase B/química , Aurora Quinase B/genética , Ligação Competitiva , Centrômero/metabolismo , Centrômero/ultraestrutura , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Células HeLa , Histonas/química , Histonas/genética , Humanos , Cinesinas/química , Cinesinas/genética , Metáfase , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Survivina/química , Survivina/genética , Survivina/metabolismo
13.
Exp Cell Res ; 390(2): 111974, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32222413

RESUMO

The formation of de novo centromeres on artificial chromosomes in humans (HACs) and fission yeast (SpYACs) has provided much insights to the epigenetic and genetic control on regional centromere establishment and maintenance. Similarly, the use of artificial chromosomes in point centromeric budding yeast Saccharomyces cerevisiae (ScYACs) and holocentric Caenorhabditis elegans (WACs) has revealed epigenetic regulation in the originally thought purely genetically-determined point centromeres and some centromeric DNA sequence features in holocentromeres, respectively. These relatively extreme and less characterized centromere organizations, on the endogenous chromosomes and artificial chromosomes, will be discussed and compared to the more well-studied regional centromere systems. This review will highlight some of the common epigenetic and genetic features in different centromere architectures, including the presence of the centromeric histone H3 variant, CENP-A or CenH3, centromeric and pericentric transcription, AT-richness and repetitiveness of centromeric DNA sequences.


Assuntos
Proteína Centromérica A/genética , Centrômero/metabolismo , Cromatina/química , Proteínas Cromossômicas não Histona/genética , Epigênese Genética , Histonas/genética , Animais , Bombyx/genética , Bombyx/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Centrômero/ultraestrutura , Proteína Centromérica A/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Artificiais/química , Cromossomos Artificiais/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Zea mays/genética , Zea mays/metabolismo
14.
Exp Cell Res ; 390(2): 111959, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32173469

RESUMO

The centromere is the nucleoproteic chromosomal structure necessary for accurate chromosome segregation during cell division. One of the earliest centromeric proteins to be discovered was CENP-B, the only one capable of recognizing a specific centromeric DNA binding motif. The phylogenetic history of this protein and of its DNA binding site shows independent events of function acquisition across different species and raises questions on the evolutionary dynamics of CENP-B, including what may be the selective advantage provided by its role at the centromere. Recent results have provided insight into potential functions of CENP-B in chromosome dynamics, however, its function is still object of debate. The recurrent appearance of CENP-B centromeric activity along phylogenesis, together with its dispensability, represent strictly intertwined facets of this controversy. This chapter focuses on the evolution, function and homeostasis of CENP-B and its importance in centromere biology.


Assuntos
Proteína B de Centrômero/genética , Centrômero/metabolismo , DNA/genética , Eucariotos/genética , Evolução Molecular , Animais , Sítios de Ligação , Divisão Celular , Centrômero/ultraestrutura , Proteína B de Centrômero/metabolismo , Segregação de Cromossomos , DNA/metabolismo , Eucariotos/classificação , Eucariotos/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Expressão Gênica , Humanos , Motivos de Nucleotídeos , Filogenia , Ligação Proteica
15.
Cytogenet Genome Res ; 160(1): 22-28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32018267

RESUMO

We report on a novel variant of the dicentric chromosome 17;20 (dic (17;20)(p11.2;q11.2) in a patient with de novo myelodysplastic syndrome (MDS). Based on FISH and array-CGH, the variant turns out to be an insertion of chromosome 17 (17p11.2-telomere 17) into chromosome 20 with breakpoints at 20q11.22 and 20q13.33. Based on conventional chromosome analysis and G-banding patterns, the region 17p11.2-17q25 was directly inserted between 20q11.22 and 20q13.33. The breakpoint junctions occurred within KCNJ12 (17p11.2), UQCC1 (20q11.2), and CDH4 (20q13.3), leading to 5' deletions of all the genes and positioning the 3' of UQCC1 next to KCNJ12 at 17p11.2 and CDH4 next to an unknown gene at 17q25-20q13.3. In addition, the centromere of chromosome 17 was not active, transforming the primary constriction to a flat band. Therefore, the novel insertion variant is a pseudo dicentric derivative chromosome with one functional centromere: 45,XX,der(17;20)del(20)(q11.22q13.33)ins(20;17)(q11.2;p11.2q25). A review of the literature of all dic(17;20) cases is presented. For the first time, we report an array-CGH characterization of such rare variant that revealed to be an insertion.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 20/genética , Hibridização Genômica Comparativa , Síndromes Mielodisplásicas/genética , Linhagem da Célula , Centrômero/ultraestrutura , Bandeamento Cromossômico , Deleção Cromossômica , Feminino , Rearranjo Gênico , Humanos , Cariotipagem , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Canais de Potássio Corretores do Fluxo de Internalização/genética , Translocação Genética
16.
Int J Radiat Biol ; 96(2): 214-219, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622124

RESUMO

Purpose: The premature chromosome condensation (PCC) technique is used to study exposure to external radiation through the determination of chromosome fragments observed in interphase cells. The presence of large telomeric signals in CHO cells interferes with the detection of PCC fragments and the identification of dicentric chromosomes. We present an improved method for the fusion of G0-lymphocytes with mitotic Akodon cells (few chromosomes and weakly-staining telomeric sequences) to induce PCC in combination with rapid quantification of dicentric chromosomes and centric rings as an alternative to the classical CHO cell fusion technique.Materials and methods: Whole blood from three healthy volunteers was γ-irradiated with 0, 2, or 4 Gy. Following a 24 h incubation post-exposure at 37 °C, chromosome spreads of isolated lymphocytes were prepared by standard PCC procedures using mitotic Akodon cells.Results: The percentage of scorable fusions, measured by telomere/centromere (T/C) staining, for Akodon-induced PCC was higher than that for CHO-induced PCC, irrespective of radiation exposure. Importantly, both techniques gave the same result for biodosimetry evaluation.Conclusion: The mitotic Akodon cell-induced PCC fusion assay, in combination with the scoring of dicentric chromosomes and rings by T/C staining of G0-lymphocytes is a suitable alternative for fast and reliable dose estimation after accidental radiation exposure.


Assuntos
Cromossomos/efeitos da radiação , Cromossomos/ultraestrutura , Linfócitos/citologia , Mitose , Adulto , Animais , Células CHO , Centrômero/efeitos da radiação , Centrômero/ultraestrutura , Cricetinae , Cricetulus , Raios gama , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Radiometria , Roedores , Telômero/efeitos da radiação , Telômero/ultraestrutura , Adulto Jovem
17.
Nat Commun ; 10(1): 4436, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570711

RESUMO

CENP-A is an essential histone H3 variant that epigenetically marks the centromeric region of chromosomes. Here we show that CENP-A nucleosomes form characteristic clusters during the G1 phase of the cell cycle. 2D and 3D super-resolution microscopy and segmentation analysis reveal that these clusters encompass a globular rosette-like structure, which evolves into a more compact structure in late G1. The rosette-like clusters contain numerous CENP-A molecules and form a large cellular structure of ∼250-300 nm diameter with remarkably similar shapes for each centromere. Co-localization analysis shows that HJURP, the CENP-A chaperone, is located in the center of the rosette and serves as a nucleation point. The discovery of an HJURP-mediated CENP-A nucleation in human cells and its structural description provide important insights into the mechanism of CENP-A deposition and the organization of CENP-A chromatin in the centromeric region.


Assuntos
Proteína Centromérica A/metabolismo , Proteína Centromérica A/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Fase G1/fisiologia , Nucleossomos/metabolismo , Animais , Ciclo Celular/fisiologia , Linhagem Celular , Centrômero/metabolismo , Centrômero/ultraestrutura , Cromatina , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/química , Epigenômica , Células HeLa , Humanos , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL/embriologia , Chaperonas Moleculares/química , Nucleossomos/ultraestrutura , Imagem Óptica
18.
J Cell Biol ; 218(12): 3912-3925, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31570499

RESUMO

Chromosome association of the chromosomal passenger complex (CPC; consisting of Borealin, Survivin, INCENP, and the Aurora B kinase) is essential to achieve error-free chromosome segregation during cell division. Hence, understanding the mechanisms driving the chromosome association of the CPC is of paramount importance. Here using a multifaceted approach, we show that the CPC binds nucleosomes through a multivalent interaction predominantly involving Borealin. Strikingly, Survivin, previously suggested to target the CPC to centromeres, failed to bind nucleosomes on its own and requires Borealin and INCENP for its binding. Disrupting Borealin-nucleosome interactions excluded the CPC from chromosomes and caused chromosome congression defects. We also show that Borealin-mediated chromosome association of the CPC is critical for Haspin- and Bub1-mediated centromere enrichment of the CPC and works upstream of the latter. Our work thus establishes Borealin as a master regulator determining the chromosome association and function of the CPC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Nucleossomos/metabolismo , Animais , Aurora Quinase B/metabolismo , Divisão Celular , Centrômero/ultraestrutura , Segregação de Cromossomos , Células HeLa , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Espectrometria de Massas , Microscopia de Fluorescência , Mitose , Fosforilação , Ligação Proteica , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/metabolismo , Survivina/metabolismo , Xenopus laevis
19.
Dev Cell ; 51(1): 35-48.e7, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31422918

RESUMO

Centromeres provide a robust model for epigenetic inheritance as they are specified by sequence-independent mechanisms involving the histone H3-variant centromere protein A (CENP-A). Prevailing models indicate that the high intrinsic stability of CENP-A nucleosomes maintains centromere identity indefinitely. Here, we demonstrate that CENP-A is not stable at centromeres but is instead gradually and continuously incorporated in quiescent cells including G0-arrested tissue culture cells and prophase I-arrested oocytes. Quiescent CENP-A incorporation involves the canonical CENP-A deposition machinery but displays distinct requirements from cell cycle-dependent deposition. We demonstrate that Plk1 is required specifically for G1 CENP-A deposition, whereas transcription promotes CENP-A incorporation in quiescent oocytes. Preventing CENP-A deposition during quiescence results in significantly reduced CENP-A levels and perturbs chromosome segregation following the resumption of cell division. In contrast to quiescent cells, terminally differentiated cells fail to maintain CENP-A levels. Our work reveals that quiescent cells actively maintain centromere identity providing an indicator of proliferative potential.


Assuntos
Proteína Centromérica A/metabolismo , Centrômero/metabolismo , Músculo Esquelético/metabolismo , Nucleossomos/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Divisão Celular , Linhagem Celular , Proliferação de Células , Centrômero/ultraestrutura , Epigênese Genética , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/metabolismo , Estrelas-do-Mar/metabolismo , Testículo/metabolismo
20.
J Mol Biol ; 431(22): 4444-4454, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425683

RESUMO

Kinetochores are the multiprotein complexes that link chromosomal centromeres to mitotic-spindle microtubules. Budding yeast centromeres comprise three sequential "centromere-determining elements", CDEI, II, and III. CDEI (8 bp) and CDEIII (∼25 bp) are conserved between Kluyveromyces lactis and Saccharomyces cerevisiae, but CDEII in the former is twice as long (160 bp) as CDEII in the latter (80 bp). The CBF3 complex recognizes CDEIII and is required for assembly of a centromeric nucleosome, which in turn recruits other kinetochore components. To understand differences in centromeric nucleosome assembly between K. lactis and S. cerevisiae, we determined the structure of a K. lactis CBF3 complex by electron cryomicroscopy at ∼4 Å resolution and compared it with published structures of S. cerevisiae CBF3. We show differences in the pose of Ndc10 and discuss potential models of the K. lactis centromeric nucleosome that account for the extended CDEII length.


Assuntos
Centrômero/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Kluyveromyces/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Centrômero/ultraestrutura , Microscopia Crioeletrônica , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Kluyveromyces/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...